224 research outputs found

    Monotonicity preserving approximation of multivariate scattered data

    Full text link
    This paper describes a new method of monotone interpolation and smoothing of multivariate scattered data. It is based on the assumption that the function to be approximated is Lipschitz continuous. The method provides the optimal approximation in the worst case scenario and tight error bounds. Smoothing of noisy data subject to monotonicity constraints is converted into a quadratic programming problem. Estimation of the unknown Lipschitz constant from the data by sample splitting and cross-validation is described. Extension of the method for locally Lipschitz functions is presented.<br /

    Fast computation of trimmed means

    Get PDF
    We present two methods of calculating trimmed means without sorting the data in O(n) time. The existing method implemented in major statistical packages relies on sorting, which takes O(n log n) time. The proposed algorithm is based on the quickselect algorithm for calculating order statistics with O(n) expected running time. It is an order of magnitude faster than the existing method for large data sets

    Construction of aggregation operators with noble reinforcement

    Full text link
    This paper examines disjunctive aggregation operators used in various recommender systems. A specific requirement in these systems is the property of noble reinforcement: allowing a collection of high-valued arguments to reinforce each other while avoiding reinforcement of low-valued arguments. We present a new construction of Lipschitz-continuous aggregation operators with noble reinforcement property and its refinements. <br /

    Geometry and combinatorics of the cutting angle method

    Full text link
    Lower approximation of Lipschitz functions plays an important role in deterministic global optimization. This article examines in detail the lower piecewise linear approximation which arises in the cutting angle method. All its local minima can be explicitly enumerated, and a special data structure was designed to process them very efficiently, improving previous results by several orders of magnitude. Further, some geometrical properties of the lower approximation have been studied, and regions on which this function is linear have been identified explicitly. Connection to a special distance function and Voronoi diagrams was established. An application of these results is a black-box multivariate random number generator, based on acceptance-rejection approach.<br /

    Extended cutting angle method of global optimization

    Full text link
    Methods of Lipschitz optimization allow one to find and confirm the global minimum of multivariate Lipschitz functions using a finite number of function evaluations. This paper extends the Cutting Angle method, in which the optimization problem is solved by building a sequence of piecewise linear underestimates of the objective function. We use a more flexible set of support functions, which yields a better underestimate of a Lipschitz objective function. An efficient algorithm for enumeration of all local minima of the underestimate is presented, along with the results of numerical experiments. One dimensional Pijavski-Shubert method arises as a special case of the proposed approach.<br /

    Shape preserving approximation using least squares splines

    Full text link
    Least squares polynomial splines are an effective tool for data fitting, but they may fail to preserve essential properties of the underlying function, such as monotonicity or convexity. The shape restrictions are translated into linear inequality conditions on spline coefficients. The basis functions are selected in such a way that these conditions take a simple form, and the problem becomes non-negative least squares problem, for which effecitive and robust methods of solution exist. Multidimensional monotone approximation is achieved by using tensor-product splines with the appropriate restrictions. Additional inter polation conditions can also be introduced. The conversion formulas to traditional B-spline representation are provided. <br /
    • …
    corecore